成功模拟漫长演化的染色体重排事件 迈出哺乳动物染色体重排改造关键一步 本章共1589字,
更新于: 2024-12-16 11:14:48
类精子干细胞中小鼠二号染色体和X染色体以头对头形式融合形成双臂染色体(红色:端粒;白色:着丝粒:绿色:近着丝粒)
(神秘的成功地球uux.cn)据中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所):9月21日,国际学术期刊Cell Research在线发表了中国科学院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)李劲松研究组题为“Creation of artificial karyotypes in mice reveals robustness of genome organization”的模拟漫长迈出文章,报道了基于类精子干细胞介导半克隆技术,演化
通过CRISPR/Cas9靶向染色体重复序列,染动物实现小鼠染色体融合改造,色体事件建立全新的重排造关稳定传递的染色体改造纯和小鼠品系,揭示了染色体融合的哺乳机制,并提示真核生物基因组组装的染色系统稳健性(Robustness)是染色体演化的重要基础。
染色体的体重稳定与变化是个体生存和物种演化的基础,是排改遗传物质宏观调控规律的一体两面,染色体数目和结构的键步变异常常对个体造成不利影响,而新物种的成功形成往往又伴随复杂的染色体结构演化。基于系统生物学研究,模拟漫长迈出距今约3到4百万年前,演化人与黑猩猩的染动物共同祖先内部产生了染色体结构上的分异,两条独立的染色体通过头对头(类似罗氏易位,Robertsonian translocation)方式融合成为现代人的二号染色体(HSA2),这一改变可能直接导致了人类始祖与黑猩猩始祖之间的生殖隔离,成为人类物种进化的关键性事件。然而,
这一事件发生的具体机制并不清楚。
实验室常用的小鼠(Mus musculus)的核型为40条染色体,在长期配繁过程中保持染色体数目和结构稳定,除Y染色体外,均为端着丝粒染色体(单臂染色体),这一点与人类染色体差异巨大,人类染色体中并未发现端着丝粒染色体的存在,而均以双臂染色体形式存在(包括近端着丝粒染色体)。但是,在自然界中野生小鼠存在较为广泛的染色体罗氏易位类型(端着丝粒染色体头对头融合)亚种,有趣的是,自然界中罗氏易位类型分布很不均衡,例如Rb(2,4)(2号和4号染色体融合)融合类型和Rb(5,15)等融合类型在亚洲,欧洲美洲各地广泛分布,但是Rb(1,13)和Rb(2,9)等融合类型目前在自然界中尚未见报道。这引起了一系列思考,染色体融合是如何发生的?为什么小鼠的染色体演化存在端着丝粒偏好性?不同类型的染色体融合方式是否影响了细胞和个体的生命活动?如何可以将小鼠的单臂染色体改造成更像人类染色体的双臂染色体?
2018年,中国科学家团队在国际上率先实现基于酵母的大规模染色体改造,利用头对尾的融合方式成功将酵母染色体合并为一条,为染色体重排改造研究打开了一扇窗,但是面对更为复杂的哺乳动物,在个体水平改造染色体在技术上面临很大的困难和挑战。可以说在单基因突变和多基因突变遗传均可以高效建模的今天,攻克哺乳动物染色体结构变异建模是重要的任务,而我国科学家独创的类精子干细胞技术,为实现哺乳动物个体水平染色体改造投来了光亮。2022年8月26日,中科院动物研究所团队利用相似的头对尾的融合方式成功获得了三只19对染色体的小鼠(Science)。
李劲松研究团队针对着丝粒核心基序Minor satellite(MinSat)设计了基于CRISPR/Cas9的靶向编辑方案,实现对着丝粒区域的靶向切割。将这样的着丝粒靶向切割系统转染到小鼠类精子干细胞中,可以实现对小鼠两条染色体在着丝粒区域以“头对头”融合的方式发生罗氏易位,形成双臂染色体,成功模拟了自然界中在漫长演化过程中发生的染色体重排事件。研究人员从1128个转染着丝粒切割组件的单克隆细胞系中,建立了10株具有稳定的19条染色体的单倍体细胞系,其中有9株细胞系保持有基因组倍性平衡。
染色体着丝粒断裂融合形成了一个新的着丝粒,但是有趣的是,研究人员发现,所有和小鼠二号染色体(Chr2)发生罗氏移位之后形成的双臂染色体具有两个独立的着丝粒(MinSat富集区域)。进一步分析,研究人员发现,小鼠Chr2与其他染色体不同,在染色体末端就具有两个着丝粒。由于双着丝粒染色体会造成在有丝分裂中存在不稳定性,容易造成染色体断裂和基因组不稳定性。进一步分析发现,小鼠Chr2具有一个活化的着丝粒和一个失活的着丝粒。这一发现也暗示了小鼠Chr2染色体和其他染色体相比在进化历程中存在着特殊的着丝粒形成事件。
染色体融合事件对于细胞的生命活动有什么样的影响呢?研究人员对具有不同罗氏易位的细胞系进行转录组测序分析,结果令人惊讶,携带单条罗氏易位染色体的“类精子干细胞”只具有最多不超过20个差异基因,这说明染色体“头对头”的融合方式对细胞表达谱扰动极小,有趣的是差异基因同时分布在参与融合和其余未参与融合的染色体上。
考虑到3D基因组结构对转录调控和进化都是重要的,研究人员考察了染色体融合对3D基因组结构的影响。罗氏易位细胞系和Wild-type细胞系比起来,A/B compartment和TAD高度相似,此外接近90%的染色质之间的显著相互作用可以在罗氏易位细胞系和Wild-type细胞系中同时被检测到。染色体融合直接拉进了两条染色体的物理距离,表现为两条染色体之间相互作用更加频繁,有趣的是,在着丝粒区域以及端粒区域,这种相互作用增强的趋势更加明显。此外,研究人员还发现,小鼠Chr11与其余染色体相互作用在发生染色体融合后表现出较强的变化,即使其未参与到染色体融合事件。总体来讲,染色体融合对基因组结构和基因表达调控影响较小,这也说明细胞内基因组结构以及表达调控存在稳态调控,体现系统稳健性(Robustness)。
类精子干细胞具有替代精子使卵母细胞“受精”的能力,将染色体融合改造的类精子干细胞注入卵子后可以产生健康“半克隆”小鼠,并可以通过繁育获得携带纯和融合染色体的小鼠品系,在实验室条件下实现了哺乳动物的核型演化事件。本项研究中,研究人员一共成功建立了四个独立的纯和染色体融合小鼠品系,雌雄纯和小鼠可自由配繁稳定传递融合染色体。
接下来研究人员尝试了在单重染色体融合的类精子干细胞上进行叠加切割,产生了二重甚至三重染色体融合的类精子干细胞。有趣的是,随着染色体融合事件的叠加,细胞差异基因数目逐渐增加,这些基因同样也分布在参与融合和未参与融合的染色体上,这暗示了染色体融合事件的累积带来转录组整体水平的扰动。令人惊喜的是,多重融合的类精子干细胞作为父源遗传物质供体依然可以支持半克隆小鼠的产生,一步实现多重染色体融合小鼠模型的建立。
综上所述,本研究证实着丝粒的断裂导致的染色体融合是染色体演化的原因,真核生物基因组组装的系统稳健性(Robustness)是染色体演化的重要基础。该研究也为哺乳动物进行染色体结构的改造、动物新核型亚种的创造以及染色体结构变异疾病的模拟提供了可行的技术路线,开启了以小鼠为代表的哺乳动物染色体遗传改造的新领域。
分子细胞卓越中心李劲松研究员为本文通讯作者,博士后张晓宇、晏萌,博士生杨振华、向浩为共同第一作者。该工作获得分子细胞卓越中心唐蔚主管、柳欣研究员、裴钢院士的大力支持。该工作也得到中心动物实验技术平台和细胞分析技术平台的大力支持,并获科技部、基金委、中科院以及上海市科委等部门的经费支持。(原标题:李劲松组构建染色体融合小鼠模型、模拟染色体演化过程)
文章链接:https://www.nature.com/articles/s41422-022-00722-x
相关:科学家成功模拟漫长演化的染色体重排事件 迈出哺乳动物染色体重排改造关键一步
(神秘的地球uux.cn)据中国科学报(张双虎 黄辛):近日,中科院院士、中科院分子细胞科学卓越创新中心(生物化学与细胞生物学研究所)研究员李劲松研究组开发出基于类精子干细胞技术的小鼠染色体改造研究系统。利用该技术,可以建立染色体融合小鼠品系,成功模拟了自然界中经由漫长时间演化才会发生的染色体重排事件,为实现哺乳动物的染色体重排改造迈出关键一步。9月21日,相关研究成果在线发表于《细胞研究》。
染色体数目和结构稳定是物种生存和繁衍的基础,而新物种的形成往往又伴随着复杂的染色体结构变化。例如,现代人演化的关键正是源于人与黑猩猩的共同祖先体内两条染色体的头对头融合。染色体头对头的融合是如何发生的?染色体融合对生物体有何影响和意义?为了回答这些问题,科学家需要对生物体的染色体进行改造。
哺乳动物高度复杂,在哺乳动物身上改造染色体技术面临很大的困难和挑战,而我国科学家独创的类精子干细胞介导半克隆技术,为实现哺乳动物个体水平染色体改造带来了曙光。
实验室常用小鼠有20对染色体,除Y染色体外,其余的染色体均为单臂染色体,形似字母“U”,着丝粒位于U形的底端。研究人员在类精子干细胞中利用CRISPR-Cas9技术针对着丝粒进行靶向切割,实现了两条染色体 “头对头”的融合,形成携带一条X形双臂染色体的类精子干细胞。
将两条染色体的着丝粒分别“切割”后再融合会“拼接”形成一个新的着丝粒,但所有和小鼠二号染色体发生融合形成的双臂染色体都具有两个独立的着丝粒。
研究人员分析发现,小鼠二号染色体与其他染色体不同,在染色体末端本身就具有一个活化的着丝粒和一个失活的着丝粒。和其他染色体相比,小鼠二号染色体进化历程中的着丝粒形成或许“与众不同”。
进一步研究发现,染色体融合会在空间上拉近两条融合染色体,但是对整体基因组的表达以及整体基因组三维结构影响很小。
“换言之,染色体作为基因组的‘零部件’,少数变化不会干扰基因组在生物体内的正常‘工作’。”该论文共同第一作者、中国科学院分子细胞科学卓越创新中心博士后张晓宇对《中国科学报》说。
类精子干细胞可以充当精子产生健康“半克隆”小鼠,进一步通过繁育获得了一系列携带一对融合染色体的小鼠品系(19对染色体)。最后,研究人员证明类精子干细胞技术可以实现染色体的多重融合并产生相应的小鼠。
该研究证实着丝粒断裂导致的染色体融合是染色体演化的重要原因,真核生物基因组的稳健性是染色体演化的重要基础,为构建染色体改造小鼠模型用于探讨疾病和演化提供了可行的技术路线,开启了哺乳动物染色体遗传改造的新领域。
“人与黑猩猩的共同祖先体内两条染色体的‘头对头’融合是现代人演化的关键事件。所以该研究非常有意义,未来可以构建染色体改造小鼠模型用于探讨疾病和演化。”李劲松说。
本书首发来自成都索客科技有限公司,第一时间看正版内容!